Submitted by S. Pelech - Kinexus on Thu, 10/07/2010 - 18:41.Unless there is a well funded parallel program of biomedical research that can make sense of the genomics data from a proteomics perspective, the genome sequencing efforts will yield primarily correlative data that will offer limited risk assessment at best. In view of the complexities of cellular regulation and metabolism, it will not provide conclusive data about the actual cause and progression of an individual's disease and how best to treat it. Unfortunately, much of the currently efforts to understand the roles and regulation of proteins are undertaken in simple animal models that are attractive primarily because of their ease of genetic manipulation. However, such studies have little relevance to the human condition. Without a better understanding of how mutations in genes affect protein function and protein interactions in a human context, genome-based diagnostics will in most situations probably not be much more beneficial than phrenology.
Phrenology is an ancient practice that was extremely popular about 200 years ago. It was based on the idea that formation of an individual's skull and bumps on their head could reveal information about their conduct and intellectual capacities. Phrenological thinking was influential in 19th-century psychiatry and modern neuroscience. While this practice is pretty much completely ridiculed now, it is amazing how many people still use astrology, I Ching, Tarot cards, biorhythms and other questionable practices to guide their lives, including medical decisions. I fear that an even wider portion of the general population will put their faith into whole genome-based analyses, especially with the strong encouragement of companies that could realize huge profits from offering such services. The most likely consequences, apart from yet another way for the sick to be parted from their money, is a lot more anxiety in the healthy population as well.
While I am sure that many of my colleagues may view my comparison of gene sequencing with obvious pseudo-sciences as inappropriate, the pace at which such genomics services are becoming offered to the general population warrants such consideration. We know much too little about the consequences of some 15 million mutations and other polymorphisms in the human genome to make sensible predictions about health risks. For only a few dozen human genes, primarily affected in cancer, do we have sufficient data to make reasonable pronouncements about the cause of a disease and the means to do something effective about it in the way of targeted therapy.
While it is easy to become exuberant about the power and potential of genomic analyses, the limitations of this type of technology alone to improve human health will soon become painfully obvious. Ultimately, economics will be the main driver of whether it is truly worthwhile to pursue whole genomic sequencing on mass. This will not be dictated simply by the cost of whole genome sequencing, but as pointed out by others, the costs of storing and analyzing the data, and whether significant improvement outcomes in health care delivery actually materialize.
I am much less optimistic about the prospects of this. When I grew up in the 1960's, there was excitement about human colonies on the moon and manned missions to Mars before the turn of the 20th century. Nuclear power, including fusion, was going to solve our energy problems by this time. I believe in 30 years when we look back at current plans to sequence tens to hundreds of thousands of human genomes, we will be amazed at the naivety of proponents for this undertaking.
Link to the original blog post.Tags: Genome Sequencing, Data analyses